skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Albrecht, Jeannie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cloud platforms often execute parallel batch applications, such as distributed machine learning (ML), that include numerous synchronization barriers. These barriers, which prevent any task from advancing beyond a specified point until all tasks have reached that point, significantly degrade application performance by reducing it to that of the slowest "straggler" task. To address the problem, researchers have proposed numerous straggler mitigation techniques, including speculatively re-executing straggler tasks and various relaxations of strict barrier semantics. While these techniques improve parallel application performance, they incur a cost in terms of the resources wasted re-executing tasks or waiting. Importantly, these costs, which are often implicit in prior work that targets dedicated resources, become explicit in the cloud, which charges for resources at fine-grained intervals. In addition, the cost difference between techniques is exacerbated in cloud platforms, since they charge substantially less for transient resources that effectively yield a probabilistic performance across a wide range. While transient resources' low list price is attractive, revocations increase the frequency and severity of stragglers, which decreases parallel job performance and increases overall execution cost. To better understand the cost of synchronization, we develop simple analytical models of different straggler mitigation techniques and compare their cost and performance on on-demand and transient resources. Our analysis shows that i) transient servers offer complex tradeoffs compared to on-demand servers, and can result in higher overall costs despite their highly discounted price due to their probabilistic performance; ii) common approaches to straggler mitigation, which is a well-studied problem, are less effective using transient servers that cause frequent and severe stragglers; and iii) a recent approach to flexible synchronization offers the best cost and performance. 
    more » « less